Digestive System
Nutrient Requirements

• Change with:
 – Weight
 – Stage of Production
 – Level of Production
 – Age

• Change with:
 – Climate
 – Level of Wool Production
 – Physical Activity
 – Diseases and Parasite Load
 – Body Condition
Nutrients

- Water
- Energy:
 - Carbohydrates
- Protein
- Vitamins
- Minerals
Water

• Water is extremely important to the animal’s health and performance
 – Coolant
 – Transporter
 – Acts in chemical reactions

• For every 4 lbs of DM consumed, 1-1.5 gallons of water should be consumed
 – Typical ewe water consumption: 0.72 in winter, 2.2 summer
Energy

- **Digestible Energy (DE; Mcal)**
 - Basis for energy requirements
 - Maintenance, Lactation, and Growth

- **Metabolizable Energy (ME; Mcal)**
 - $ME = 82\% \text{ of } DE$

- **Total Digestible Nutrients (TDN; \% or lbs.)**
 - 1 lb. TDN = 2 Mcal of DE
Energy

• Most important nutrient
 – Inadequate energy limits performance more than any other nutritional deficiency

• Supplied through:
 – Carbohydrates (grains), fat, and excess protein (inefficient)
Energy

- Concentrates and roughages serve as the major source
- Commonly the most limiting nutrient
- High concentrate diets:
 - >ADG and FE than high forage diets at similar ME levels
- High intake animals have heavier digestive tracts and internal organs at the same age as low intake animals

(McLeod and Baldwin, 2000)
Protein

- Dietary protein \rightarrow ruminal microorganisms \rightarrow microbial protein \rightarrow amino acids
- This is important because:

 Quantity is most often more important than quality!!!

 - Microbial protein is commonly adequate, however with low quality forage, additional protein might be required

- Overfeeding protein is expensive!
Protein

- Sheep and goats have higher protein requirements per body weight than other ruminants.
- Under very high production, bypass protein may increase productivity.
- More expensive than energy feeds.
- Can use non-protein nitrogen (NPN).
Bypass Proteins

• Low Bypass:
 – Soybean meal, casein, sunflower meal, peanut meal

• Medium Bypass
 – Cottonseed meal, dehydrated alfalfa meal, dried brewers grains

• High Bypass
 – Corn gluten meal, feather meal, fish meal
Nitrogen

• Nitrogen (% or lbs)
 – Important when considering feeding urea

• Crude Protein (CP, % or lbs)
 – Nitrogen x 6.25
 – Common terminology referring to nitrogen content of the diet
Nitrate Poisoning

- Drought stricken, frost damaged, or heavily fertilized fields may contain forages with high nitrate levels
 - Need to be tested!
 - 1-3% potassium nitrate indicates that feeds should be blended
 - Can be deadly!
MAJOR POINTS
GUIDANCE

Protocol:
Use the following chart to assess the body condition score (BCS) of breeding sheep.
This assessment should be done at least once a year, ideally after sheep have been shorn.
Record the BCS of each breeding sheep in the table below.

<table>
<thead>
<tr>
<th>BCS1</th>
<th>BCS2</th>
<th>BCS3</th>
<th>BCS4</th>
<th>BCS5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emaciated</td>
<td>Thin</td>
<td>Ideal</td>
<td>Fat</td>
<td>Obese</td>
</tr>
</tbody>
</table>

- **Emaciated**: Spine prominent and smooth. Muscles are very thin with no fat cover. (Chest and abdomen are skinny and bony)
- **Thin**: Spine prominent, muscles are present with a small amount of fat cover. (Fat is clearly visible)
- **Ideal**: Spine prominent, muscles are full with a small fat cover. (Muscle mass is evident)
- **Fat**: Spine prominent, muscles are full with a thick fat cover. (Muscle mass is suppressed)
- **Obese**: Spine and transverse processes are covered with fat. (Muscles are not visible)

Pressure is needed to feel the spine and transverse processes. The spine cannot be felt but a dimple can be seen over the spine. The muscles are very full and fat covers them. Bones are not visible and are covered with excessive fat.

Sheep with a BCS of less than 2 must receive additional management to increase their body condition score.

Any animal not responding to management, where their body condition has deteriorated further, must be euthanized.

<table>
<thead>
<tr>
<th>Animal ID</th>
<th>BCS</th>
<th>Treatment / Action taken</th>
<th>Outcome</th>
</tr>
</thead>
</table>

Adapted from “Body Condition Scoring of Sheep” by J.M. Thompson and A. Meyer (Oregon State University)
BREEDING: EWE AND RAMS
• Also maintain condition
 – Breeding is the most stressful time
 – BCS higher prior to breeding
• Early growth:
 – Heavy concentrate feeding vs. Slow growth
 • Bent legs, wool, etc.
• Maintenance
Overall Ewe/Doe Management

The quantity & quality of what sheep/goats eat (nutrition or energy intake) controls their fatness (body condition), Which in turn directly affects a number of production factors including:

Lamb/kid survival
Fiber production of both females & their progeny
Ewe/Doe Diets, Production Stage

- Maintenance
- Flushing
- 1st 15 wks gestation
- Last 5 wks gestation
- Early Lactation
- Late Lactation

Graph showing dry matter, TDN, and CP levels across different stages of production.
Ewe/Doe Management

• Establishing target BCS at breeding and lambing/kidding increases flock performance and future management
 – Feeding
 – Prevent common health issues
 • Toxemia
 • Calcemia
 • Dystocia
Pregnancy Toxemia

• Ketosis/Pregnancy disease/Lambing sickness/twin-lamb/kid disease
• Principal: low blood sugar (glucose), (-) energy
• Onset: triggered by stress
 – Nutritional
 – Inclement weather
• Most prevalent:
 – When carrying 2+ lambs or kids
 – Ewes/does that are extremely fat or excessively thin
 – 1-3 wks prepartum
Preg Tox

• Prevention
 – BCS of 3 at breeding; Aim for BCS 3-3.5 at parturition
 • Plan for 3-4# good quality hay (>10% CP) and 1.5# grain/hd daily in late gestation
 – Fetal Counts (feed)
 – Do not allow free-choice feeding in first 4 mos of pregnancy
 – Supplement concentrates in last 2-4 wks of gestation or access to lush pasture
 – If severe weather, may increase to 2-3# grain/hd/d divided into 2 feedings
 – Parasite management
Preg Tox Treatment

• Glucose drench
 – 60-100 mL/d for 3 days
 – Can add CA, insulin, and potassium
 – Can also had electrolyte solutions

• Offer good quality hay & oats

• Sometimes induction necessary
 – Dexamethasone (20 mg, IV or IM)
 – Occurs within 24 to 72 hrs (36 hrs)
Hypocalcemia or Milk Fever

- **Cause:** decreased calcium intake when requirements increase
- **Timing:** Late gestation, early lactation
 - 6 wks prior to 10 wks post-parturition
 - Commonly: 1-3 wks prepartum
- **Target:** Ewes/does carrying multiples
- **Can be concurrent with preg tox**
- **Nutrition and mobilization**
- **<5% of flock, up to 30%**
HC or Milk Fever

• Treatment:
 – Ca Borogluconate IV (50-150 mL of 23% solution)
 – Oral or SQ administration to prevent relapse
 – Can cause arrhythmias
 – Can mix
 • Above with:
 • With 1 L of a 5% dextrose solution
 • Administer over 10 min period
Feed Additives

<table>
<thead>
<tr>
<th>Animal</th>
<th>Additive</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb</td>
<td>Chlorotetracycline</td>
<td>Gain, feed efficiency, enterotoxemia</td>
</tr>
<tr>
<td>Breeding ewes</td>
<td>Chlorotetracycline</td>
<td>Vibrionic abortion</td>
</tr>
<tr>
<td>Sheep</td>
<td>Oxytetracycline</td>
<td>Gain, feed efficiency, scours prevention and treatment, enterotoxemia</td>
</tr>
<tr>
<td>Sheep</td>
<td>Lasalocid</td>
<td>Coccidiosis</td>
</tr>
<tr>
<td>Lambs</td>
<td>Decoquinate</td>
<td>Coccidiosis</td>
</tr>
<tr>
<td>Lambs</td>
<td>Ammonium Chl.</td>
<td>Urinary calculi</td>
</tr>
<tr>
<td>Sheep</td>
<td>Thiabendazole</td>
<td>Roundworms</td>
</tr>
</tbody>
</table>
Minerals

• Sixteen essential minerals:
 – Required for skeletal and nervous systems, health, growth, and reproduction

• Minerals of importance:
 – Salt, calcium, phosphorus, magnesium, potassium, sulfur, copper
Salt Requirement

- **Requirement:** 0.5 - 1.0% of diet
 - Provided in ration or as loose mineral (covered)
 - Purchased with or without other trace minerals

- **Deficiency:** Feed consumption, water intake, milk production, growth rate, chewing wood/dirt.

- **Toxicity:** Death possible, but not likely.
Calcium Requirement

• Requirement: 0.2 – 0.82% of diet
 – Most forages are adequate
 – Ground limestone, dicalcium phosphate

• Deficiency: Abnormal bone development (rickets), tetany (muscle spasms), urinary calculi. Late gestation and early lactation.

• Toxicity: Not likely, but may cause deficiency in other minerals.
Phosphorus Requirement

• Requirement: 0.16 – 0.38% of diet
 – 2:1 to 7:1 calcium to phosphorus ratio
 – Most grains are excessive
 – Dicalcium phosphate

• Deficiency: Rickets, slow growth, decreased appetite

• Toxicity: Urinary calculi in rams and wethers!
 – Treat with 7-10 grams/head/day of ammonium chloride
Magnesium Requirement

- **Requirement:** 0.12 - 0.18% of diet
 - Plant protein sources
 - Magnesium carbonate, oxide, and sulfate

- **Deficiency:** Skeleton, tetany (frothing at mouth, falling on side, salivation, decreased appetite, death)
 - Lactating ewes grazing spring grass (high potassium)

- **Toxicity:** Not likely
Potassium Requirement

- **Requirement:** 0.50 – 0.80% of diet
 - Most forages are adequate, grains may be low
 - Potassium chloride or sulfate

- **Deficiency:** Listlessness, stiffness, convulsions, death

- **Toxicity:** 3% of diet dry matter causes depression of Mg absorption (tetany)
Sulfur Requirement

- Requirement: 0.14 – 0.26% of diet
 - Most feedstuffs are adequate
 - Distillers grains are extremely high!
 - Sodium methionine and sulfate

- Deficiency: Loss of appetite, reduced gains, reduced wool growth, wool shedding

- Toxicity: 0.4% of diet
 - Decreased intake
 - Ties up Copper and Molybdenum
Copper Requirement

• **Requirement:** 7 – 11 ppm
 – Most feedstuffs are adequate, but Sulfur and Molybdenum tie up copper
 – Copper sulfate (0.5% of ration)

• **Deficiency:** decreased immune status, swayback, stringy wool, infertility

• **Toxicity:** 25 ppm
 – Red blood cell breakage, death!
 – Don’t use mineral supplements for other animals!
 – Drenching with 100 milligrams of ammonium molybdate and 1 gram of sodium sulfate.
Vitamins

• All sheep require vitamins A, D, and E.

• Lambs may also require B complex.
 – After rumen develops, microorganisms synthesize these vitamins.

• Vitamin C is synthesized by body tissues.
Vitamin A Requirement

- Requirement: 21 IU/lb live weight
 - Green forages contain B-carotene which is converted to Vit. A
 - Grains are poor sources
 - Vitamin A, D, and E injection prior to lambing

- Deficiency: Growth retardation, retained placenta, reproductive failure, night blindness, dead lambs.

- Toxicity: Not likely
Vitamin D Requirement

- Requirement: 252 IU/100 lb live weight
 - Sun-cured hay
 - Grains are poor sources
 - Vitamin A, D, and E injection prior to lambing

- Deficiency: Rickets

- Toxicity: Not likely
Vitamin E Requirement

• **Requirement:** 9 – 10 IU/lb of diet
 – Vitamin E or selenium injection
 – Alfalfa is a good source
 – Vitamin A, D, and E injection, especially for lambs

• **Deficiency:** White muscle disease
 – Stiff rear legs, arched back, tuck-up rear legs
 – Same affect as selenium deficiency (not a huge problem in ND)
 – Corn diets can contribute to deficiency (high Vit. E)

• **Toxicity:** Not likely
Vitamin B Complex Requirement

Thiamine, B₂, niacin, B₆, pantothenic acid, folic acid, B₁₂, biotin, and choline

• Requirement: Not required in diet, synthesized in rumen.

• Exception: Polioencephalomalacia in early-weaned and feedlot lambs on high-concentrate diets
 – Treat with Thiamin injection
 – Symptoms: Down on side, paddling with feet, head thrown back
Urolithiasis

- Obstruction in urethral tract; males
 - Dietary imbalance, water restriction, urine pH
 - Ca Carbonate stones: diets low in Phosphorus and Mg
 - Silica: high silicone content, combined with Cu and Zn deficiencies
 - Struvite: grain-based diets, high in phosphorus, low in Ca
 - Urine pH < 7.0 (silicate), >7.0 (apatite, calcium, struvite)
- Symptoms:
 - Depression, stretching, tail swishing, pain during urination, dribbling urine, appearance of bloat (water belly)
 - Urine crystals on prepuce, rectal prolapse
- Treatment:
 - Rarely medical, sometimes can be dissolved
 - Usually: penile amputation, perineal urethrostomy, urethrotomy
Rumen Acidosis

• Rapidly fermentable starch/sugar in excess
 – Lactic Acid = overproduced
 – Decline in rumen pH
 – pH promotes lactobacillus bacteria, make more LA
 – Leads to: dehydration, hypovolemic shock
 • Rumen imbalance, irritation
 • Bacteria and toxins can enter circulation
 – Systemic Acidosis

• Why?
 • Sudden changes in diet (amount, type, weather, etc.)
Rumen Acidosis

• Signs: 12-36 h after ingestion
 – Anorexia, depression, weakness,
 – Bloat, diarrhea, acute laminitis
 – Chronic: laminitis, foot abscesses, some neurological signs
 • Polioencephalomalacia

• Treatment:
 – Shock, dehydration, acidosis, toxemia, removal of feed
 • IV Sodium bicarbonate (5%), NSAIDS
 – Convert to roughage
 – Rumen transfaunation
 – Thiamine supplementation
Ration Balancing Software

• **OSU Ration Software:**
 http://agecon.okstate.edu/meatgoat/

• **Other software:**
 http://agecon.okstate.edu/meatgoat/record.asp

• **Https://msusheepration.montana.edu/**

• Brands (Iowa State)